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Intro — a practically usable model?

>

Imagine we have traded an option of maturity T on an asset S, whose payoff is
f(ST).

The pricing library supplies a pricing function P(t,S).

We have no idea of what's been implemented.

How do we assess whether it's OK to use P(t,S)?

Sanity check 1

» Set t = T; check that P(t=T,S) = f(S5),VS.

If OK, then sanity check 2

» Compute delta: A = %.

> P&L of a short delta-hegded position during [t, t + §t] is:

P&L = — (P(t +6t,S+68S) — (1 + rot)P(t, 5)) + A(55 —(r— q)55t)

» Expand at order 2 in S, 1 in Jt:

dP dP 1 d?P
P&l = — (—rP+ — —q)S— |6t — — 6§52
( Pt g Tlr=a) d5> 2 ds?
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Intro — a practically usable model? — 2

» P&L during 6t is:
P&L = — A(t,S)dt — B(t,S)6S?

» if A(t,S) >0, B(t,S) >0 = Always loosing money: no good.

» if A(t,S) <0, B(t,S) <0 = Always making money: no good either.

» OK to use P(t,S) only if signs of A and B different, VS, Vt.

5S\* A
P&L = —BS?| (| — 5t
i - e () 4 )
» Reasonable ansatz, if S is an equity: Bi52 — —cst = —o°. Using expressions
of A and B: ,
dP dP 1 _,d°P
—rP _ _ y— /\2 52
P Trm S 27 ds?

» This is in fact the BS equation. Carry P&L acquires simple form:

2 2
P&L = — —52d P (§> — 55t
27 dS2 S
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Intro — a practically usable model? — 3

>

Simple form of P&L => simple break-even criterion. Only reason why BS equation
used in banks.

No assumption that equities are lognormal — they are not.
No assumption that volatility is constant — it is not.

Not even the assumption of a process for S.

Criterion for breakeven of P&L at order 2 in 6S = P solves parabolic equation =
probabilistic interpretation & P interpreted as an expectation.

What if there are multiple hedge instruments? Carry P&L reads:
1 d’P (65 6S;
P&l = — =5;S; I C— Ciiot
2fﬁ@(&@ f)

> Criterion for P&L to be nonsensical: C must be positive matrix.
> There is exist breakeven covariance levels VS, Vt that are payoff-independent.
Important thing: only involves hedge instruments — not model’s state variables.

S; underliers — or 1 underlying & associated vanilla options.
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What's left to do?

» Once option is delta-hedged, we are left with gamma/theta P&L. Total P&L
incurred on [0, T]:

d2p
P&l = —¥;e(T-t)g2 45|, (r? —5%6t), r = S

I

» |Is this P&L sizeable?

» If S follows a lognormal process with volatility ¢ and 6t — 0, then P&L = 0.

> Returns of real undelyings (a) do not have exhibit volatility, (b) have
non-Gaussian conditional distributions. Set:

ri = O‘,'Z,', E[ZI2] =1
Then:

d2p
P&l = —x;e(T—t)g2 |, (a,?z,?—azat)

I

» Z; non-Gaussian @ impacts short-maturity options.

» o; random AND correlated => impacts longer-maturity options.
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What's left to do? — 2

» Use typical parameters. Stdev(P&L) as fraction of price for an ATM option, as a
function of maturity:

70% -

Real case

60% - - = - without kurtosis term
Lognormal case

50% -

40% -

30% -

20% -

10% -

0% T T T T T T T 1
0 3 6 9 12 15 18 21 24
Maturity (months)

» For 1y maturity: Black-Scholes: 5%, while ~ 30% in the real case.

» Delta hedging better than nothing — but remaining gamma /theta still too large.

» Gamma needs to be cancelled as well = options are hedged with options.
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What's left to do? — conclusion

=> P becomes a function of t, S and other derivative prices
> For example vanilla options: P(t,S, OkT).

» This is called "calibration”.

» Admissible models are such that the P&L of a delta/vega-hedged option reads:

1 d?P [ 6S; 6S;
P&L = — ZS§;S; L2 Ciot
2Jﬁ@<$% f)

with C positive (implied) break-even covariance matrix of hedge instruments S;.
» ( is payoff-independent.

> ldeally we would like to be able to choose the Cj;.

» We call "market models” models satisfying this condition.

» Usually not able to write down SDEs for hedge instruments directly, so condition
needs to be checked a posteriori.

» 2 examples:
» Local volatility

» Local-stochastic volatility
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The local volatility model
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Local volatility — intro: things heard on the street

» LV model used inconsistently: local vol surface is calibrated today; only to be
recalibrated tomorrow.
=> violates model’s assumption of fixed LV surface.

» Trading practice: don't use LV delta — instead compute "sticky-strike” delta:
move S, keep implied vols unchanged, recalibrate local vol surface.

» Rationale: so that vanilla options have BS delta.

» On a scale from dirty to downright ugly, where do we stand?

» What is the carry P&L of an option position?

» By the way, what's the delta of a vanilla option?
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Local volatility — 1

» Local volatility: simplest model that is able to take as inputs vanilla option prices.

» Provided:
> no time arbitrage: if zero int. rate: dCKT >0 = T1<T, = TlaKT < TQO'KT

- - . d*Ckr
> no strike arbitrage: —=~ >0

there exists a (single) local volatility function o(t,S), given by the Dupire

formula:

C 1 qC + (r—q) K
(LS = 2 < +q (r—aq)

such that, by using:
dS; = (I’ — q)Stdt + O'(t, St)Stth

vanilla option prices are recovered.

» Pricing function of LV model reads: P(t, S, Oxr) or P(t,S,0kT) — no parameter
beside time & values of hedge instruments.

» Model assumes fixed o(t, S) while, in practice, local volatility function is
recalibrated every day. Does this make any sense?

» What are the deltas (vegas)?
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Local volatility — 2
» Pricing equation of the local volatility model reads:

dPLV dPLV 1 d2 PLV

—q)$S ~0°(t,5)S” = rPY
g PTG T (B9 e =

Just like BS equation except o(t,S) instead of cst volatility .

» Solution of PDE is PY(t, S, o)
» In LV model all instruments have 1-d Markov representation as a function of t, S:

8KT(t> 5) = 2?/7—(1', S,O‘)

» Imagine trading the LV delta:

» P&L during dt of delta-hedged option is:

1 _,d?PY [ /55\?
P&LY = — =52 — ) — (¢, S)ot
27 T ds? (( 5) o(t,5)

> P&LY actual P&L only if market implied vols move as prescribed by ¥ (t, S,0).

=  AY useless
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Local volatility — carry P&L

» Let's compute the carry P&L in the LV model.

>

>

>

>

Use (black-box) pricing function P(t,S,ok7) given by:

P(t,S,6x7) = PY(t,S,0(t,S,5kT])

PLV(t,S,J) =

Start with P&L of naked option position:
P&L = — [P(t+ 5t, S+6S, Gxr + 06xkT) — (1 + r5t)P(t,5,3Kr)]

Expand at order 1 in t, 2 in S and dokT:

P&L = rPdt
dP

— 5t — =85 —

dt

Xt

dP dP

dS dokT
d?*P d’P
R Mp—
dS? dSdo kT

Notation e stands for:

df
dokT

056‘;{7‘ = //deT 5

® dOKT

of

AN

OKT

1
e 0oKTOS + —

P(t,5,TR7(t,S,0))

d’*P

2 doxrdGr 1

A~

doKT =

o 56\'}(7‘58;{/ T/>
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Local volatility — carry P&L — 2

dP dP

> 450 dt
> Define sticky-strike delta A>>:
dP

ASS - 9¢
dS

~

OKT

» P is not solution of the LV pricing PDE — P is:

PY(t,S,0) = P (t, S, okt = TR (t, 5,0))

» Express derivatives of P in terms of derivatives of P:
dP" dP  dP  dIpf;
_— —|— [ ]
dt dt dokT dt
dPY dP  dP  d¥};
= —|— [ )
ds dS ' déxr  dS
EPY (P &P dERy P dTr AT
dS2 dS2 dSdGxr  dS doxrdo 1 dS  dS
» Now insert in LV pricing equation:
dPLV dPLV 1 d2PLV
—q)S ~o°(t,S) S?
g T UrmaTe o) s

... to generate relationship involving derivatives of P.

are computed keeping the okt fixed — the LV function is not fixed.

dP
dokT

5,
dS?

)

— PV
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Local volatility — carry P&L — 3

dP dP dP
i —_q)S— _
dt r (r—aq) dS Aokt ® UKT
1 2 2 d>Lv 2 dyly 4y
— Z0%(t,5) S a'p + 2 df o« KT L dli o KT KT
2 d52 deO'KT ds dO‘KT dO'K/ T’ ds ds
with uxTt given by:
ay e 1, d?x i dx ¥
= —o2(t,5) 2 —XKL — q)S§—KT
KKT 0t +20( ) 452 +(r—aq) d4S

» Now use this expression of % to rewrite P&L of naked option position:

dP dP
P& = — — (55 — (I’ — q)55t) — — ° (5/O'\KT — ,uKT(St)
ds dokT
1 d?P d?P d¥ty 2p dyV_ gyv
+ Z0%(t,5)S? [ —= + 2——— ¢ —KTL 4+ __ d — o KT KT ) 5¢
2 ds? dSdoxr . dS doxrdonir . dS  dS
1d2P __, d2P 1 2P
— | =—— ——— e JokTd0S — dOKTOO K T+
(2 4529 T Gsdarr " 07KTO T S darda T | COKTOOK T)
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Local volatility — carry P&L — 4

> Introduce implied (log-normal) vol of vol of Gkr:

1 d¥bl
— So(t,S
» Rewrite P&L as:
dP dP
P&IL = — — (55 — (I’ — q)55t) — — ° ((58;{7‘ — ,LLKT(SI')

ds dO‘KT
1 _,d?P [65?

- — o?(t,S) st
27 d4s? { sz 7 (55 }

d?P §S 6o

— e SGkr [— IKT _ o(t, S) VKT5t]
deO'KT S OKT
1 d?P R SOKT 0CK! T+

— = — — @ OKTOK!'T! | — — — UKTVK' T/ 0t
2dO'KTdO'K/T/ OKT OKk't?

» Only uses market observables: P(t,S,ok71) — no LV function involved.

» P&L expression is that of market model.

> Variance/covariance breakeven levels are well-defined, payoff-independent, and make
up a positive covariance matrix.

» Delta is sticky-strike delta %, vegas simple vegas. 16 / 48



Local volatility — carry P&L — 5

» okt = implied vol plays no special role. Use instead price Oxt: P(t, S, Okr).

P(t7578KT) — P<t757 OKT — PE?—(t,S,aKT))

PY(t,5,0) = P(t,5,Q7(t,S,0))

Qi (t,S,0) price in LV model with LV function o.
Everything same as before, except ok — OkT, T — QX%

» Drift uxr simplifies:

dQgr 1 > > Qi dQiT
= —o°(t,S5)S —q)S———
HKT + 57 (t,S) 42 +(r —q) d4S

" = QY = rOxr  OK

» P&L of naked option position — using only asset prices — no LV function involved:

dP dP
P&L = — —— (65— (r— q)Sét) — SOk — rOkT ot
dS( (r—aq) ) dOKT.( kT — rOkTdt)
1 d°P
— == [65% — o%(t,S) 56t
2452 | o (t,5) 570t
2 dQLV
__ar ., §S60kT — 0 (t,5) S?—KL st
dSdOxT ds
1 d?p dQLY dQLtv_,
S SOxT00y 71 —o? (t,5) §? — KL~ K'T 54
2 dOx7dOpi 11 |0 KT KT =@ (£:5)5" s —as 17/48




Local volatility — carry P&L — 6

>

Expression of carry P&L — inclusive of recalibration of local volatility function —
has typical form of market models.

Hedge instruments all treated on equal footing.

Implied break-even levels of cross-gammas are payoff-independent — are
determined by market smile prevailing at time t.

> spot/vol correl = —100%

> vol/vol correl = 100%

| of Gum i 1 dERY
> vol ol okT ISVKT = v
X dS

So(t,S)

Hedge ratios simply % Ox and dgﬁr
T s

Delta of the local volatility model is — market model delta:

AMM Q
dS

Okt

Delta of vanilla option irrelevant notion.

> akin to asking model to generate a hedge ratio of one hedging instrument on
another hedging instrument.

Result seems = natural; looks like any P that’s the solution of a parabolic PDE

will do the job — but see pathologies in local /stoch vol models.
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Consistency of sticky-strike and market-model deltas

» Use S, Okt = P(t,S, Okr). Hedge ratios AMV dP

ar ’ _dP_
dS 1Okt dOkT

> Use S,0kr > P(t,S5,0k7). Hedge ratios A>® = 9 " d;ir

S
dP

>/\—
dokr

offset by trading BS-delta-hedged vanilla options

» Hedge portfolio is:

d d
n=%s, 9

0
ds dOwy - KT

» Rewrite in terms of delta-hedged vanillas:
dP23 dPR3
n— d77_|_ d73. KT}S—}— dP.[ KTS]
dS dOkT dS

» Spot hedge ratio?
» Move spot + move vanilla prices by their Black-Scholes deltas
akin to: move vanilla prices keeping implied vols fixed = sticky strike delta

dP  dP  dPES

ASS — 97 .
dS  dOkr dS

» Once hedge portfolio broken down into underlying + naked vanilla options, delta

MM dp
always equal to A 35 |0y

» Nothing fundamental about A>° — tied to a particular representation of vanilla
option prices.



So, what is the LV model?

» The LV model is a usable model. It is a market model for the underlying and
vanilla options

... that happens to have a 1-d Markov representation in terms of (t,S).

» This is a mathematical technicality — of which the LV function is a by-product —
that facilitates pricing. Nothing fundamental.

» Daily recalibration of LV function is exactly how it has to be used.

» Consequences of 1-d Markov representation:

» The break-even covariance matrix is of rank 1 — correls = 100%.

» No control on break-even levels of volatilities of implied volatilities. They are set by
the configuration of S, okt and will vary unpredictably.

» Like them, use model — don’t like them, don’t use model.

» LV model completely specified by feeding in the values of the hedge instruments —
no parameters whatsoever.

» This is how much we can get in a model with a 1-d Markov representation.
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Using the LV model

» What's left before we can use LV model? Output the vkr, see if we like them.

>

» More practical to look at implied vols for floating strike — fixed moneyness.

Look at vols of vols and spot/vol covariances.

For ATMF vol 5, 7 equivalently look at SSR R+

Vol of vol:

Thus:

R — 1 <d6'\/:.,_7' d|n5> _ 1 da'\/:TT
T 7 St ((dInS)2) St dInS
.
Sy — OKT
dinK |
do 1 do do t,S
AO'FTT _ OFTlenSt _ doFrT GA(, )th
OF+T OF+T dinS dinS OF+T

0 Fy0
vol(Gr 1) = RTST<G 0 )
FrT

Assume following expression for LV function:

o(t,5) = (t)+a(t)x_|_5() 2 len(%)

and calculate S7, Rt at order 1 in a(t), B (t).
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Expansion of Implied volatilities
» Consider an LV model — Model 1: LV function o1(t, S), pricing function Pi(t,S).

— —q)S—— —oi(t,S5)S

» Now consider arbitrary diffusive model — Model 2: instantaneous volatility ;.
dSt = (I’ — CI) Stdt + J2t5tth

» Consider process Q: defined by:
Q: = e Py (t,St)

» At t =0, Qi—o = Pl(O,S()).

> Att =T, Qi = e ""P(T,S7) = e "Tf(S>7), that is the final payoff.

0 dPq dPq 1 d? Py ]
dQ: = e | —rPi+ — )dt+ —dS; + = dS?
Q = e ( Put T )dt G dSet 5 osy (4
0 dP; dPq 1 . d?P;
_ rt . 0L 0L g2t L 2
— e ( rPy + " )dt+ TS dS; + 25t 12 o2tdt}
. [dPy 1 . d?P;
= e rt _d—S(dSt — (r — q)Stdt) —+ ES?d—y(o-%t — O'%(t, St))dt:|

SZ d?P
E>[dQ:|t,S:] = e 2t = 1

> 4S2 (Ugt—o'l(ﬁ St)z) dt 22 /48




Expansion of Implied volatilities — 2

E[QT] = Qo+/OTEz[th]

T 52 d2P1
= P;(0,5)+E =L
1 (0, S0) + 2{/06 > 452

(U%t — o1 (t, St)z) dt]

» So, price in Model 2 given by:

T 52d2P1
P> (0.S0.8) = Pi(0.S0)+E —rt 2t
2 (0, So, @) 1(0,S0) + 2[/06 T

(agt — o1 (t, St)z) dt]
where e other state variables of Model 2.

» Price(Model 2) = Price(Model 1) + gamma/theta P&L, incurred by hedging
payoff using Model 1 with dynamics of S; generated by Model 2.

=> Efficient numerical algorithm for generating vanilla smiles of stochastic volatility
models — see book.

» Imagine Model 1 is BS model with implied vol = okt => P»(0, So,®) = P5,.(0, So)

T 52 d2P8
0 = E2 |:/0‘ e_rt 2t d52KT (O-%t _8%(7-) dt
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Expansion of Implied volatilities — 3
» Thus:

E2 [fo —rt52 dSUZKT O'2tdt:|

2P5
E2 [fOT e_rtSETzKTd :|

~2

OKT =

» Work with variances u = ¢°. Set uy = 0§ and 03, = uo + du(t, S).

» Expand at order 1 in du: Oxr = 05 + 6(Ckr).

E,.sul®(ug+ou E,.sul® ou
52— 024 6(6h) = o+sul® (o +0u)] o+sul® Ou]
Eu0—|—5u[.] Eu0+5u[.]
E,le ¢
— ug o[ du]
Eu o]
Eug e (uo + 6u)]
Euy o]
» Thus: . ép,
Eo, { o € Tu(t,S)S dSQOdt]
~2 _
OkT —

an {fo —rt 52 aod}

» Density and gamma available in closed form in BS model.
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Dynamics in LV model — 2

» Calculation can be done with deterministic uo(t) = 0§(t). At order 1 in Ju:
wi o \/(WT_Wt)Wty

t, Fre“T VT
where F; forward for maturity t, xx = In(F—KT) and w; = fOtO'g(T)dT.

» Expanding around a cst o(t) = 0o: Uo = 0

1 T +oo > [(T—1)t
OKT = 7/dt/ dy G(t, Fre Tt o0V y)
0 — 00

=> Implied vol =~ average of local vol around straight line —in InS — from S to K.

d/\
St = TKT —/ —a(t)dt "skew averaging” — see also V. Piterbarg
din K K=Fr
d?c
oK - / ) B(t)dt
dinK2|,_p.
dc 1 7 t
OKT — —/ (1——)a(t)dt
dIn S K=F1 T 0 T
2~
» Cst a, 5: = d“o kT _ B
B Kl k—rFr 2 dlin K2 K=Fr 3
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Dynamics in LV model — 3

> From 1st equation: a(t) = Z(tS:)+ St
do do do 1 7 I
s O LR ( OKT OKT ) = —/ a(t)dt = ST+—/ Stdt
dinS dinK |k_p, dInS|x_p T Jo T Jo
: dGr 1 dinS d5
» Get expression of SSR: R+ = slT < <(F;nTS)2> ) = slT j;(;”-

1 (7S
Rr = 1+ = —dt
T + T/o S,
» For typical equity smiles, |S;| decreases with t =& Rt > 2.

» Limiting behavior

» Short maturities:

lim R+ = 2
50T

Lognormal vol of short ATMF vol = twice the skew.

1 .

> Long maturities — take St o< =

im Ry = =1
T—o00 1—’7

» For typical value v = % im0 R = 3. 26 / 48



Dynamics in LV model — 4

» Check approx of SSR on 2 smiles of Eurostoxx50

50% 50%
40% 40%
L ]
30% 30%
L
20% 20%
= [nitial smile —— Initial smile
10% Spot = 90% 10% Spot = 90%
— Spot = 110% — Spot =110%
0% 0%
50% 70% 90% 110% 130% 150% 50% 70% 90% 110% 130% 150%
0.0 4 0.0 4
0 1 2 3 4 5 6 0 1 2 3 4 5 6
-0.1
-0.1
-0.2
-0.3 . -0.2
-0.4
-0.3
-05 -/ «  Actual J « Actual
Benchmark Benchmark
-0.6 -04 -°

Figure: Top: smiles of the Eurostoxx50 index for a maturity ~ 1 year observed on
October 4, 2010 (left) and May 16, 2013 (right). Bottom: term structures of ATMF
skew and power-law fits with v = 0.37 (left), v = 0.52 (right), as a function of T (years).
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Dynamics in LV model — 5

» Real versus approximate SSR

2.6

24

2.2

2.0

1.8

0

e Actual
— Approx
T 1

1 2 3 4 5 6

3.0

2.8

2.6

2.4 -

2.2 -

2.0

* Actual
—— Approx

0 1 2 3 4 5 6

Figure: Rt as a function of T (years) computed: (a) in FD (actual), (b) using

expression R

-
1+ =+ [y g—;dt (approx).

» What about smile with St %? Approx fomula gives limr_ o Rt = o0
(logarithmic divergence of R71):

0.0 -
-0.1 -
-0.1 -
-0.2 -
-0.2 -
-0.3 -
-0.3 -

-04 4 °

-04 -
-0.5 -

e Actual
Benchmark

4.0

3.5 -

3.0 -

25 4

2.0

¢ Actual
—— Approx

0 1 2 3 4 5 6 7 8 9 10 11

» Approx slightly overestimates SSR.
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Conclusion

» LV model is a genuine market model for underlying + vanilla options
» The only diffusive market model that possesses a 1-d Markov representation in
terms of (t,5)

» Generates well-defined break-even levels for spot/vol and vol/vol covariances in
the carry P&L.

» Daily recalibration of LV function — an ancillary object — is exactly how model

should be used and deltas calculated.

> Spot/vol break-even correlations = —100%, vol/vol break-even correlations = 100%.

> Volatilities of implied volatilities given by: vol(cxt) = zLV dZKTS (t,S).

» Delta is well-defined: AMM |OKT' Delta of vanilla option irrelevant notion.

» When vega-hedging with (BS) delta-hedged vanilla options, sticky-strike delta
should be used.

» Good approximate formulae for sizing up break-even vols of ATMF vols — or
equivalently SSR:

Ry = 1+—/ t dt

~ UFO
VO|(OFTT) = RTST< 0 )
OF+T
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Local-stochastic volatility models — and
non-models
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Motivation

» In LV model, nothing to enter beside values of hedge instruments — zero
parameter.

» Break-even covariances are set by prevailing smile. If smile is flat, implied vols of
vols = 0.

» Can we regain some leverage on the model-implied dynamics of hedge
instruments?

» Poor man’s fix:
> Pick your favourite stochastic volatility model.

» Decorate SV instantaneous volatility with local volatility component.

> Is it a (usable) model?

» Provided answer is positive
» What is the delta? What are the vegas?

» What kind of model is it?
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SV models

>

>

Which SV model should we use?

Unlike LV model, SV models have parameters that we can use to drive the
dynamics of the okr.

First generation of SV models: based on instantaneous variance V;, e.g. the

Heston model:
dSt = (I’ — C])Stdt -+ sV4 Vt Stth
dVi = —k(Vi — VO dt + v/ V,dZ;

Pbm: V; not an asset — no way to generate P&L « (Vi, — V4 ) = dynamics of
okT needs to be checked a posteriori.

Better to model dynamics of hedge instruments directly, for example forward

variances &, :
dSt\?
el = Et[( T)] — E[Vy]
St

» Can be bought/sold by trading variance swaps (VS) — at no cost. VS volatility for
maturity T at time t, o7 (t) given by:

_ 1T
or(t) = T_+ £ dt
—tJe

> ¢ is driftless: d¢] = e dW,” 32/48



Forward variance models

» Need to specify a dynamics for the curve &/ such that:
» Low-dimensional Markov representation

> Able to generate flexible patterns for volatilities of VS volatilities 1. Typically:

N 1
VOI(O'T) X ﬁ, o c [03,06]

» In practice using two Brownian motions with exponential weightings is sufficient:

def
g

(20N [(1 —g)e~(T=gul ¢ 9e‘k2(T_t)th2}

with v: volatility of a volatility with vanishing maturity and N normalization

factor.
&l = fF(t, X}, XP)

with X}, X? two OU processes — easily simulated exactly.

» Process for S; is:
dSe = (r— q)Sedt + \/€LS.dW;

» Also able to generate decay of ATMF skew S; % with v typically =~ %

see papers Smile Dynamics I, 1l IV.
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Models used as examples in presentation

» Mixed Heston model
{ dSt = (r — Q)Stdt—|— O'(t, St)\/ Vt Stth
dVe = —k(Vi — VO)dt + v/ VidZ;

» Mixed two-factor model
dS: = (r — q)Sidt + o (t,St)\/Ct SedW;
\ dcl

¢

where ay = 1/\/(1 —0)? 4+ 62 +2p0 (1 — 6); v vol of short vol.

.

— W N [((1 _9)ef(T=gwl 4 Qe—kz(T—t)thz]

» LV component o(t,S) calibrated on vanilla smile.

» Pricing function in mixed model:
> in Heston model PM (t,S,0, V), V number.

> in two-factor model PM (¢, S, o, ¢¥), ¢¥ curve.
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Usage of mixed models

>

>

>

Choose model parameters & initial values of state variables:
» |n Heston: (k,a, P, VO), V.

> In two-factor model: (kl, kr, 0, v, p12,p51,p52), C.

Calibrate local volatility function o(t,S) to market smile.
> In 1-factor model like Heston: solve fwd PDE for density.
> General technique: particle method of P. Henry-Labordére/J. Guyon (2009).

Then Shift+F9 = produces a (real) number. Is it a price?

What about deltas?
» Typically, move spot, recalibrate local vol and reprice.
> Is it right delta? What kind of carry P&L does this materialize?

Let's assume this is a model. Can we have an approximate way of sizing up:

> volatilities of implied vols
> covariances of spot and implied vols — equivalently SSR?
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Two pricing functionals

» PY(t,x): takes as inputs t, S, LV function + state variables A of SV model:

PM(t,S,0(,), N\

» In Heston: A\ = V — number

> In two-factor model: A = (Y — curve

» P(t,X) takes as inputs t, S, implied vols + state variables of SV model:

P (t, 5, 8KT7 )\)

» Could include in x,X model parameters as well (= state variables with zero
drift /vol).

> Will use P( ) — rather than P"( ) —to do P&L accounting.

» Could use prices rather than implied vols.
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Carry P&L — P(t, S,0kT, )\)

» In mixed model — for a set LV function — okt is a function of t,S,0(,) + state
variables: X = X(t, x):

P (t,x) = P (t,x(t,x))

» Implied vols given by:
Z%T(t,S,O', )\)

OKT

PM P related through:

P"(t,S,0, \) = P(t,S,Zir(t,S,0,)), \)

» Pricing equation for PM — with set LV function — zero rates:

dPM d 1 d?
—— 4+ [ Zppuk— + ZXpa PM = 0
dt +< btk g 5% kldxkdx,>
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Carry P&L -2

» Switch to variables X:

dP
dt

with:

d 1 d?
Yiti——+-Xja——=|P =0
+< 'udx,-+2 dex,-dxj>
dX; dX; 1 d?x;
0 = i y i 2y .3 i
H gr kb g Ty kA
dx; dX;
3," = 2 .a L=
i KK

» 1 drift of X; and 3j; covariance matrix of X; and X;

> as generated by mixed model with fixed LV function.

a%;
ka

» Now consider P&L of short option position — unhedged for now — zero rates:
P&L = — P(t+ 6t, X+ 0x) + P (t,X)

involve derivatives of functional Z%T(t, S, 0, ) with respect to t, S, \.
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Carry P&L - 3

» Expand at order two in dX, one in dt.

dP dP 1 d?P
P&L = — = §t— %, 6% — —¥;— 0%:0%
dt dx; 2 dX,'de
dP 1 d?P
= — X (0% — pidt) — -xjj————(0x;0x; — ajjot
dX,'( X s ) 2 JdX,'de( x XJ aJ )

» Among components of X:
O; market observables: S,oxT.

A\ = state variables of SV model

» Rewrite P&L:

dP 1 d?P
P&l = —S.— . 1 Iy 50: — 3
& 40, (50, M,ét) 5 UdO,’dOj (60,5OJ a,JcSt)
dP
— Y — (0 — i o
dek( k — Mk t)

1_  d?P d2P
—2 4 (5)\/(5)\/ — 3/(/51.') — 2 ik
2 dAd\ dO;jd Xy

(5Oi5)\k — 3;k5t)
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P&L hedged portfolio

> Portfolio: option + hedges that offset sensitivities 2 Py = P + ¥;afi(t, S, O))

» P&L equation also holds for hedge instruments © canceling dO; term cancels 10t

contribution. P&L of hedged position:

P&L Ly, Py (50:60; — 3j;6t)
— . . . —
: 2 UdO,'dOJ' e Y
dP,
_5 M A, — Tigot
kd/\k( Kk — Hidt)
1_ d2P, d2P,,
_ iy SAON — Bt) — 5 5Oi6 M e — 355t
2 K dAde,( KON = 20t) kdO,-d)\k( k — 3ik0t)

» 1st piece OK: thetas matching gammas on market instruments.
dx; dx;

> ajj positive covariance matrix: a;j = 2 (i dxy dx;

» 2nd / 3d pieces no good. P&L leakage from variation (or not) of SV state
variables.

» By construction value of hedges indpdt on Ag: dd/(fk = 0, so:
dPy  dP d’Py  d°P Py d°P
dhi  d\¢’ dhrd),  dAed)\,)’ dO;d\,  dO;d )\,
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P&L hedged portfolio — 2

>

>

Ak are not market values — are in our control. For example, take d\x = Likdt.
Still leaves us with 3d piece in P&L:

1_  d?P d2P
—2 ONON — Qydt) — X;
> k/d)\kd)\,( KON — A dt)

P&Lleak - _ ;
H “dO;d )\

(5015)\k — 3;k5t)

Is there a solution to P&L leakage?

YES — need condition on P(t, O, \):

dP

- — k
oy 0, V

S,0KT

Pricing functional P(t,S,okr, A) must have zero sensitivity to SV state variables.
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Conclusion: admissible (or gauge-invariant) models

» Criterion for models that can be used in trading: P (t,S,0k7, A):
dP

i — 0
dAk 15,547

» P&ILy of delta-hedged/vega-hedged position then has typical form of market
models: ,
1. d?Py

P&ly = — -%;—
" 277 d0;dO;

(50,5OJ — 3U5t)

Break-even covariance levels are given by covariances in model with fixed LV
dx; dx;

dxj dx;

function: 3,J = 2 4/au

» Pbm: condition = 0 usually not satisfied.

x|

dA1S,6T

> Ex: not satisfied in local/stoch vol model built on Heston model:
2P (t,S, 5k, V) #0 D P&L leakage

» Not usable in trading.

» Do admissible models exist at all?
» YES.
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Admissible models — 2

» Consider mixed two-factor model. Pricing function P(t,S,oxr, C").

» Model equivalently written as:

( dS: = (r — q)Sedt + \/E\/f(t,th,Xl?) o(t,St) SedW;
\ dX} = — ki X}dt + dW}

| dX? = — koXZdt + dW?

with Xg = 0, X§ = 0 and:

(2vep)?

f(t,x1,x) = G2v g [(1=0)xq +0x] — S—5x (1)
1 — e—2k1t 1 — e—2k2t 1 — e_(kl+k2)f
t) = 1-6)———+0°———— +2p0(1 -0
X ( ) 2ky N 2ko 208 ) ki + ko

» Pick arbitrary "“, do following transformation:

CU % (PUCU
o(u,S) — ,/ia(u, s)

» SDEs for S;, X{, X? unchanged: (;SCPU = 0 = mixed two-factor model admissible.
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Admissible models — 3

» Other admissible models:
> lognormal model for V; (SABR)

> smiled version of two-factor model (see SD IlI)

» Significance of condition %|5 - = 0
yOKT
> % = % 0: price depends on more state variables than hedge instruments. Ex.
YyOKT

with Heston model: P (t,S,oxT, V).

: : _ 2 2
> State variables \ are stochastic @ model allocates thetas proportional to %, %
> P&L leakage, even if 6\ = 0.

» Does not happen with model parameters VO, k, v, p — do not generate P&L leakage.

» Model allocates no theta to gammas on model params.

» Like making P a function of a non-financial state variable — e.g. temperature.

» In admissible models, SV degrees of freedom do impact dynamics of assets, yet do
not require extra hedges.
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Now know which models are usable — what's left to do?

>

>

>

>

Size up break-even covariance levels for S/okr, okT /0K T

» Like them, use model; don't like them, don’t use model.

» In practice, look at dynamics of implied vols with floating strikes — fixed moneyness,
rather than fixed strikes.

Approximate formulae for vols of vols and spot/vol covariances — for ATMF vols?

Consider in particular SSR:

1 (d&rdInS)
St ((dInS)?)

Ry =

Expand at order one in vol of vol v and local vol function.
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Example

» Pick as mkt smile smile generated by two-factor model. Parameters typical of
Eurostoxx50 smile. VS vols flat at 20%.

» So that full SV situation attainable.

~ 1
> Parameters so that vol(o1) o< —5.

> psx1, Psx2 (calibrated on actual smile) so that St ~ % .

7 95/105 vol pts

e Model

- Power-law exp = 0.5

Model params 3
nu 310.0%
theta 13.9% 2
k1 8.59
k2 0.47 1 - ¢ 0
rho XY 0%

0 T T T T T T

rho_SX -54.0% 0 1 2 3 4 5 6
rho_SY -62.3% Mat - years
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Example — 2

» Test 1: use same parameters for underlying SV model — local vol flat = 1.
» MC: computed numerically — other curves: order-1 formulae

> Everything as function of maturity (years).

% SSR 200% Vol of ATMF vol Spot/ATMF vol correl
180% - 0% : : : :
3.0 1 160% | 2 4 6 8
e PureSV- MC ? e PureSV-MC 20% e PureSV-MC
25 1 —— PureSV 140% - —— Pure SV ° —— PureSV
— v 120% - — — v
1 100% 0% 1
151 . — 80% - 6%
10 60% -
40% - -80% - 0 . ° °
05 - 20%
0.0 0% : -100% -
0 2 4 6 8 4 6 8
» Test 2: Now halve vol of vol of underlying SV model
3.5 % -
SSR 200% Vol of ATMF vol Spot/ATMF vol correl
180% -
3.0 0% , , ,
160% - 2 4 6 8
—— Pure SV —— Pure SV
25 140% - W -20% — W
20 [ —m, R o K o 120% 1 — Mixed a0% | — Mixed
e me® ° 100% - e Mixed - MC e Mixed - MC
1.5 \ 80% -
-60% -
10 . — Puresv 60%
— v 40% -80% - \
05 1 Mixed 20% | \-‘
00 . * Mixed-MC 0% -100% -
0 2 4 6 8 4 6 8
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Conclusion

» Characterization of local /stoch vol models that can be used for trading. Pricing
function P(t,S,okr, A) has to be such that:

dap

d\ =0

S,0kT

Models not obeying this condition => P&L leakage.

» Models obeying condition are genuine market models: thetas matching
asset/asset cross-gammas with positive break-even covariance matrix.

dP

= — the LV function is
OKT

S

» Delta and vega given simply by % 5 r and

recalibrated.

» Good approximate expressions for break-even covariances for ATMF vols & spot.
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